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REPORT

No Gene Is an Island: The Flip-Flop Phenomenon
Ping-I Lin, Jeffery M. Vance, Margaret A. Pericak-Vance, and Eden R. Martin

An increasing number of publications are replicating a previously reported disease-marker association but with the risk
allele reversed from the previous report. Do such “flip-flop” associations confirm or refute the previous association
findings? We hypothesized that these associations may indeed be confirmations but that multilocus effects and variation
in interlocus correlations contribute to this flip-flop phenomenon. We used theoretical modeling to demonstrate that
flip-flop associations can occur when the investigated variant is correlated, through interactive effects or linkage dis-
equilibrium, with a causal variant at another locus, and we show how these findings could explain previous reports of
flip-flop associations.
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Associations of opposite alleles at the same biallelic lo-
cus with the same disease are confusing findings, partic-
ularly in the same ethnic group. For example, both the
long and short allele at the HTTLR locus of the serotonin
transporter gene have been found to be risk alleles for
autistic disorder (MIM %209850) in different studies.1–6

Additionally, two independent studies report the opposite
alleles at the same SNP in the glutathione-S-transferase
omega-1 gene (GSTO1 [MIM *605482]) positively asso-
ciated with age at onset (AAO) in late-onset Alzheimer
disease (AD [MIM #104300]).7,8 Another example is the
association of the catechol-O-methyltranserase gene
(COMT [MIM �116790]) with schizophrenia (SCZD [MIM
#181500]).9–13 Theoretically, such “flip-flop” associations
for a genuine causal variant would be unlikely to occur in
samples ascertained similarly from a common population.
Thus, flip-flop associations found in apparently similar
samples are often regarded as spurious findings.

Flip-flops of risk alleles have also been reported across
different ethnic groups14,15 and may be more easily ex-
plained by population differences. These flip-flop associ-
ations may indicate heterogeneous effects of the same var-
iant that are due to differences in genetic background or
environment. It is well known that changing the genetic
background (strain) in transgenic mouse experiments can
significantly change the resulting phenotype. Differences
in linkage disequilibrium (LD) between populations could
also lead to inconsistent patterns of association when non-
causal variants are tested. Despite these possible explana-
tions, it remains arguable whether flip-flop associations in
general suggest a confirmation or spurious association.

False-positive results may account for most cases of ir-
reproducibility of association studies.16 It has been specu-
lated that extreme positive or opposite findings tend to
attract investigators and journal editors and are hence pub-
lished earlier than other results.17 Inconsistent findings,
therefore, may be attributable to publication biases (i.e.,

significant results tend to be favored for publication) and
reporting biases (i.e., investigators may report only posi-
tive findings). Lack of acknowledgment of these biases
may result in false-positive results.

When multiple loci act in concert to cause a disease, a
single-locus association may be confounded by the other
loci. We hypothesized that some flip-flop associations may
be attributable to failure to account for multilocus effects
or correlation with other loci. Our study consists of three
parts. In the part I, we used theoretical models to evaluate
how multilocus effects can explain flip-flop associations.
In part II, we examined how variable LD patterns within
the COMT gene might lead to inconsistent associations of
the gene with SCZD. In part III, we extended the frame-
work of LD to the correlation between two nonsyntenic
loci. We used observed flip-flop associations between the
glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH
[MIM *138400]) and AD as an example.

Part I: Assessment of single-locus association in the presence
of multilocus effects.—Suppose we conduct a single-locus
association analysis in a sample of unrelated cases and
controls. We observe genotypes at a target SNP denoted
by “SNP1”; another untested SNP is denoted by “SNP2.”
Assume that SNP1 has two alleles A and a and that SNP2
has two alleles B and b. We computed the correlation co-
efficient between alleles A and B, such that the frequencies

D
r p ,�P P P PA a B b

where is the LD coefficient, PAB is the fre-D p P � P PAB A B

quency of haplotype AB, and PA, Pa, PB, and Pb are allele
frequencies for the four alleles A, a, B, and b, respectively.
The constraints are such that , , andP � P p 1 P � P p 1A a B b

D lies between and .�min(P P ,P P ) min(P P ,P P )A B a b A b a B

Assuming that only SNP1 is analyzed in an association
study, we evaluated how the unexamined SNP2 may influ-
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Figure 1. Penetrance values for each two-locus genotype combination under different models of multilocus effect. The penetrance
values were calculated by specifying , , and for each model.a p .001 v p 0.1 v p 0.21 2

ence the observed direction of association between SNP1
alleles and risk of disease. To assess the observed associ-
ation between SNP1 and disease risk in the presence of a
joint effect of SNP1 and SNP2, we compared the frequency
of allele A at SNP1 in affected individuals and unaffected
individuals for four different theoretical models of multi-
locus effects (fig. 1). Models I, II, and III are based on the
locus-locus interaction models proposed by Marchini et
al.18 The values for parameters f, v1, and v2 were used to
compute probabilities of being affected with a disease (i.e.,
penetrance) for individuals carrying different two-locus
genotypes. Baseline penetrance f is the probability of being
affected if the two-locus genotype is aabb. v1 and v2 reflect
the genetic effect of allele A and allele B, respectively. For
example, under model I (multiplicative model), each copy
of allele A increases the risk of disease by a factor of 1 �

. Similarly, each copy of allele B increases the risk ofv1

disease by a factor of . We added a fourth model,1 � v2

model IV, that specifies simple additive effects for the two

loci. Figure 1 shows the penetrance values for various two-
locus combinations under the four different models of
multilocus effects. To compute the penetrance values, we
specified , or 0.1, and let , 0.2, orf p 0.001 v p 0 v p 0.11 2

0.4, such that either of the two causative alleles A and B,
at best, exerts modest effect on susceptibility to disease.
Using the penetrance values, we computed the odds ratio
(OR) for allele A in affected versus unaffected individuals,
given the allele frequencies for two alleles A and B in the
whole population were either 0.1 or 0.5.

ORs for allele A at SNP1 in affected individuals versus
unaffected individuals corresponding to various r values
with fixed v1 and v2 are presented in figure 2 (only models
I and IV are shown, since models II and III showed no
flip-flop associations). Figure 2A and 2B shows how asso-
ciation with allele A at SNP1 varies with r under model I.
Figure 2C and 2D shows how association with allele A at
SNP1 varies with r under model IV. The direction of single-
locus association flips (i.e., the OR crosses 1) under models



Figure 2. ORs corresponding to the effect size of allele A under models I and IV. Parameters for each situation are specified. A, , , and under modelf p 0.001 v p 0.1 v p 0.21 2

I. B, , , and under model I. C, , , and under model IV. D, , , and under model IV.f p 0.001 v p 0.1 v p �0.2 f p 0.001 v p 0.1 v p 0.2 f p 0.001 v p 0.1 v p �0.21 2 1 2 1 2
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Figure 3. Directions of allelic association for the A allele
in different situations. We used the statistic x p (P � P )/A B

, where , to demonstrate how the di-�P(1 � P)/N P p (P � P )/2A B

rection of allelic association varies depending on v2, given the
same frequency of the A (and B) allele (∼50%) and model of
multilocus effect. v1 is fixed at 0.1 for all models. Panel A indicates
the situation where A is a risk allele and B is also a risk allele;
panel B indicates the situation where the A allele is a risk allele
and the B allele is a protective allele.

Table 1. Population Variation in LD
between the Val158Met Polymorphism (A
Allele) and the P2 Promoter (B Allele)
within the COMT Gene

Population 2Na

Allele
Frequency

rA B

Biaka 140 .51 .94 5.03
Mbuti 76 .67 .80 5.07
Yoruba 152 .86 .64 .03
Ibo 94 .66 .64 .01
Hausa 76 .57 .74 .20
Ethiopians 64 .64 .67 .03
African Americans 180 .57 .67 .19
Yemenite Jews 86 .69 .62 .66
Druze 148 .65 .62 .32
Adygei 108 .72 .66 .40
Russians 96 .52 .49 .38
Finns 70 .56 .47 .10
Danes 102 .43 .39 .11
Irish 230 .59 .50 .48
European Americans 186 .53 .38 .34
Chinese 120 .69 .78 .52
Taiwanese 98 .63 .75 .59
Hakka 80 .65 .83 .46
Japanese 102 .58 .69 .31
Ami 80 .75 .85 .41
Atayal 84 .86 .82 .36
Cambodians 50 .69 .72 5.22
Nasioi 46 .66 .74 .37
Micronesians 74 .91 .86 .19
Yakut 102 .70 .70 .59
Cheyenne 112 .73 .71 .85
Arizona Pima 102 .85 .82 .72
Mexican Pima 106 .68 .65 .33
Maya 104 .42 .47 .72
Ticuna 132 .78 .78 .86
Rondonian Surui 92 .75 .70 .54
Karitiana 110 .95 .99 .42

NOTE.—Negative estimates of r are shown in bold.
a umber of individuals recruited in each study.N p n

I and IV as r varies. We also performed simulations in
which the allele A frequency was set at 0.01 and 0.005
and saw no change in the direction of association when
allele B frequency was 0.005, 0.01, 0.3, or 0.5 (data not
shown). Therefore, such flip-flop associations are seen par-
ticularly when the risk allele (A) at the target locus is a
relatively common allele. Additionally, the point at which
the direction of association changes tends to be when the

two SNPs are in weak LD with each other (e.g., r ≈ �0.25
in fig. 2A). This indicates that the observed direction of
allelic association may be particularly susceptible to sam-
pling variation when there is little LD, and remarkable
variation in LD patterns is not required.

Figure 3 demonstrates how association of allele A with
disease risk varies by r, v1, and v2 (only models I and IV
are shown). Again we see that the A allele may be posi-
tively or negatively associated with the disease, depending
on the allelic correlation and the disease model. Interest-
ingly, we may still observe a flip-flop association at SNP1
even if it has no direct effect on disease risk. This was seen
in models with for which the observed SNP actsv p 01

only through LD with SNP2. The results based on v p 01

are similar to those based on (data not shown).v p 0.11

Part II: Examining population variation in LD across the
COMT gene.—For 32 populations, we estimated, on the
basis of published data,19 the correlation coefficient r be-
tween an RFLP (HindIII-1217) located in the P2 promoter
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Figure 4. The effect of the Val allele (i.e., the A allele at NlaIII RSP) on SCZD across 32 populations. Allelic effect is presented by
OR. For model A, and ; for model B, and ; for model C, and . For all four models,v p 0.1 v p 0.2 v p 0.1 v p 0.4 v p 0.1 v p 0.81 2 1 2 1 2

.f p 0.001

Figure 5. The effect of the Val allele (presented by OR) on SCZD
in the Cambodian population, given different disease models (i.e.,
different effect ratios for the P2 promoter compared with the Val
allele).

and an NlaIII RFLP containing the Val158Met polymor-
phism in exon 4 of the COMT gene. Table 1 summarizes,
for each population, the allele frequencies of A (site ab-
sent) and B (site absent) in the NlaIII and HindIII RFLPs
in the COMT gene, respectively, and r between these two
loci. We see that estimates of allele frequencies and allelic
correlation vary across the populations. The effect of the
A allele on disease risk was modeled under several putative
disease models in these 32 populations (fig. 4). We found
that the observed magnitude of association between the
A allele and risk of disease varied across different pop-
ulations. In the Cambodian population, allele A became
overrepresented in unaffected individuals when the effect
ratio—that is, —for the P2 promoter com-(1 � v )/(1 � v )2 1

pared with the Val allele exceeds 1.4 under model I (fig.
5). Note that a previous study estimated ORs of 1.6 and
1.1 for the effects of the P2 promoter polymorphism and
the Val allele, respectively, on SCZD, which is consistent
with an effect ratio in excess of 1.4.20

Part III: The GAPDH and APOE genes in AD.—The Alz-
heimer Disease Family data set and genotyping methods
for GAPDH and APOE were described elsewhere.21 Briefly,
the overall data set was composed of 653 white individ-
uals: 369 unrelated subjects with AD and 284 unrelated
control subjects. The mean (�SD) AAO for the affected
subjects is , and controls were age matched at71.1 � 6.6
the time of examination (AAE), with a mean AAE of

. Twelve SNPs in the GAPDH gene and its para-71.9 � 6.3
logs were genotyped using the ABI 7900 TaqMan system.
APOE alleles were genotyped as reported elsewhere.22

Li et al.23 reported that the G allele at a 5′ UTR SNP—
rs3741916 (CrG)—in the GAPDH gene was positively as-
sociated with AD, whereas Lin et al.21 (from our laboratory)

reported that the C allele at the same locus was the pos-
itively associated allele in an independent AD sample. The
original study reported that the G allele was positively
associated with AD in the subset, without any copies of
the APOE �4 allele, whereas Lin et al.21 found that the same
allele was inversely associated with AD in the subset car-
rying at least one copy of APOE �4 alleles (a well-docu-
mented risk factor for AD). We thus sought to examine
whether such opposite effects could be attributed to the
variation in correlation between the rs3741916 SNP and
the APOE polymorphism.

Table 2 summarizes the findings of association between
rs3741916 in the GAPDH gene and risk of AD. We found
that, under a recessive model, the G allele at rs3741916
was positively associated with AD in the earlier-onset sub-
set ( ) but that the C allele was positively associ-P p .007
ated with AD in the later-onset subset ( ). We fur-P p .047
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Table 2. Genotypic Relative Risk for rs3741916 in the GAPDH Gene and
the Correlation between rs3741916 and the APOE Polymorphism

AAO

rs3741916 and Disease
rs3741916 and APOE

Polymorphism

OR (95% CI) P ORa (95% CI) P rb

�72 years ( )N p 195 .36c (.17–.76) .007 .27 (.07–.99) .049 �.021
172 years ( )N p 211 2.78d (1.02–7.62) .047 .92 (.32–2.70) .884 .005

NOTE—The genotypic relative risk is presented as an OR.
a The relative risk of carrying at least one APOE �4 allele for individuals carrying at least

one G allele at rs3741916, compared with individuals carrying no G alleles at rs3741916.
b The APOE polymorphism was treated as a biallelic marker (the �4 allele vs. the non-�4 allele).
c The genotype at rs3741916 in the GAPDH gene was coded as 1 for CC and 0 for GC�CC.
d The genotype at rs3741916 in the GAPDH gene was coded as 1 for GG and 0 for GC�CC.

ther found that the G allele at rs3741916 was inversely
correlated with APOE �4 allele ( ; ) inr p �0.021 P p .049
the earlier-onset subset in our data set. On the contrary,
the G allele at rs3741916 was not significantly correlated
with the APOE �4 allele in the later-onset subset of our
data set ( ; ). The data set (of subjectsr p 0.005 P p .884
recruited by Washington University in St. Louis) analyzed
by Li and colleagues23 included subjects with AD who had
a mean AAO of years. The subjects included in76.2 � 6.8
our data set had significantly younger AAO than did the
subjects included in the Washington University data set
( ; ). These results suggest that opposite al-t p 11.1 P ! .001
leles are associated with AD in these two different samples
because of differences in the interlocus correlation be-
tween APOE �4 and GAPDH alleles.

The current study demonstrates that the observed effect
of a genetic variant can differ between studies because of
differences in its correlation with other causal variants.
Association studies are often conducted on a marker-by-
marker basis. For a complex disease, the interplay of mul-
tiple loci and environmental factors plays a role in its eti-
ology. Therefore, examining the association between a sin-
gle locus and disease may produce ambiguous results be-
cause of the lack of consideration of other disease-influ-
encing genetic loci or environmental factors correlated
with the target susceptibility locus.

Not only can flip-flop associations occur when a mul-
tilocus effect is not accounted for, but they may also be
attributable to investigation of a noncausal variant in LD
with a genuine causal variant. When the investigated al-
lele at the noncausal variant is positively associated with
the disease-risk allele in a population, the target allele at
this SNP appears to be a risk allele. When this target allele
at this SNP is negatively associated with the disease-risk
allele in another population, the target allele at this SNP
will appear to be a protective allele.

There are two scenarios we need to address separately.
First, flip-flop phenomena may be attributable to genuinely
different LD architectures. We have found notable differ-
ence in LD patterns in the COMT gene across populations
with different ancestral origins. Therefore, flip-flop associ-
ations of the Val allele with SCZD across different ethnic

populations (e.g., Irish vs. Cambodian) could easily be due
to the variation in LD architecture. Second, flip-flop phe-
nomena may also be attributable to sampling variation
that leads to variation in observed LD patterns. In this sce-
nario, we may see flip-flop phenomena in different sam-
ples of the same ethnic origin, particularly when there is
low LD between loci within the same gene.

LD patterns across the same genetic region can be highly
variable across different ethnic populations.24,25 Variation
in LD architecture across different populations within the
same ethnic group has also been noted.26 LD patterns are
modulated by several factors, including local recombina-
tion rate,27 mutation-selection balance, genetic drift, and
population history. Another crucial factor, sampling var-
iation, may lead to more-extreme swings in observed LD
that may produce controversial opposite single-locus ef-
fects, as our theoretical modeling predicts. Therefore, we
suggest that LD patterns be examined in different samples
whenever flip-flop phenomena occur. If the samples show
different patterns of LD between markers in the region,
then this may explain the flip-flop. According to our the-
oretical modeling results, markers in weak LD with each
other (e.g., ) may also need to be considered care-2r ! 0.3
fully, since flip-flop associations may be due only to sam-
pling variation. Additionally, for loci with a minor-allele
frequency !5%, it may be more likely that flip-flop phe-
nomena indicate spurious results than confirmatory re-
sults confounded by the multilocus effect.

In summary, single-locus association studies may be com-
plicated by interaction between an investigated locus and
other risk factors. Consequently, conventional association
tests performed in a “one-marker-at-a-time” fashion may
produce ambiguous results, despite the genuine genetic
effect. The current study shows that flip-flop associations
may be partially attributable to population variation in
interlocus correlation when the loci are not considered
jointly. In-depth investigation is required to verify whether
such phenomena indicate a confirmation or spurious as-
sociation. These contradictory results should not be dis-
missed out of hand, and we should remember that ge-
nomic context is critical to the accurate interpretation of
association results. Indeed, we would adapt the famous
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work of John Donne28: “No gene is an island, entire of
itself, every gene is a piece of the interactive genome.”
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